Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.717
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
2.
Curr Biol ; 34(1): 12-23.e5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38096820

RESUMO

Sleep disturbances are detrimental to our behavioral and emotional well-being. Stressful events disrupt sleep, in particular by inducing brief awakenings (microarousals, MAs), resulting in sleep fragmentation. The preoptic area of the hypothalamus (POA) is crucial for sleep control. However, how POA neurons contribute to the regulation of MAs and thereby impact sleep quality is unknown. Using fiber photometry in mice, we examine the activity of genetically defined POA subpopulations during sleep. We find that POA glutamatergic neurons are rhythmically activated in synchrony with an infraslow rhythm in the spindle band of the electroencephalogram during non-rapid eye movement sleep (NREMs) and are transiently activated during MAs. Optogenetic stimulation of these neurons promotes MAs and wakefulness. Exposure to acute social defeat stress fragments NREMs and significantly increases the number of transients in the calcium activity of POA glutamatergic neurons during NREMs. By reducing MAs, optogenetic inhibition during spontaneous sleep and after stress consolidates NREMs. Monosynaptically restricted rabies tracing reveals that POA glutamatergic neurons are innervated by brain regions regulating stress and sleep. In particular, presynaptic glutamatergic neurons in the lateral hypothalamus become activated after stress, and stimulating their projections to the POA promotes MAs and wakefulness. Our findings uncover a novel circuit mechanism by which POA excitatory neurons regulate sleep quality after stress.


Assuntos
Privação do Sono , Sono , Camundongos , Animais , Sono/fisiologia , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia , Vigília/fisiologia
3.
Science ; 382(6669): 399-404, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883550

RESUMO

Sexual, parental, and aggressive behaviors are central to the reproductive success of individuals and species survival and thus are supported by hardwired neural circuits. The reproductive behavior control column (RBCC), which comprises the medial preoptic nucleus (MPN), the ventrolateral part of the ventromedial hypothalamus (VMHvl), and the ventral premammillary nucleus (PMv), is essential for all social behaviors. The RBCC integrates diverse hormonal and metabolic cues and adjusts an animal's physical activity, hence the chance of social encounters. The RBCC further engages the mesolimbic dopamine system to maintain social interest and reinforces cues and actions that are time-locked with social behaviors. We propose that the RBCC and brainstem form a dual-control system for generating moment-to-moment social actions. This Review summarizes recent progress regarding the identities of RBCC cells and their pathways that drive different aspects of social behaviors.


Assuntos
Hipotálamo , Comportamento Social , Animais , Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Sexual/fisiologia , Masculino , Feminino , Comportamento Materno/fisiologia , Comportamento Paterno/fisiologia , Comportamento Consumatório
4.
Science ; 382(6669): 388-394, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883552

RESUMO

The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.


Assuntos
Hipotálamo , Neurogênese , Animais , Hipotálamo/fisiologia , Hipotálamo/ultraestrutura , Mamíferos , Neocórtex/citologia , Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Análise da Expressão Gênica de Célula Única
5.
Science ; 382(6669): 405-412, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37883555

RESUMO

Neural substrates of wakefulness, rapid eye movement sleep (REMS), and non-REMS (NREMS) in the mammalian hypothalamus overlap both anatomically and functionally with cellular networks that support physiological and behavioral homeostasis. Here, we review the roles of sleep neurons of the hypothalamus in the homeostatic control of thermoregulation or goal-oriented behaviors during wakefulness. We address how hypothalamic circuits involved in opposing behaviors such as core body temperature and sleep compute conflicting information and provide a coherent vigilance state. Finally, we highlight some of the key unresolved questions and challenges, and the promise of a more granular view of the cellular and molecular diversity underlying the integrative role of the hypothalamus in physiological and behavioral homeostasis.


Assuntos
Hipotálamo , Neurônios , Sono REM , Sono de Ondas Lentas , Vigília , Animais , Regulação da Temperatura Corporal , Eletroencefalografia , Hipotálamo/citologia , Hipotálamo/fisiologia , Sono REM/fisiologia , Vigília/fisiologia , Humanos , Neurônios/fisiologia , Sono de Ondas Lentas/fisiologia
6.
Nat Commun ; 14(1): 6381, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821426

RESUMO

Circadian clocks generate rhythms of arousal, but the underlying molecular and cellular mechanisms remain unclear. In Drosophila, the clock output molecule WIDE AWAKE (WAKE) labels rhythmic neural networks and cyclically regulates sleep and arousal. Here, we show, in a male mouse model, that mWAKE/ANKFN1 labels a subpopulation of dorsomedial hypothalamus (DMH) neurons involved in rhythmic arousal and acts in the DMH to reduce arousal at night. In vivo Ca2+ imaging reveals elevated DMHmWAKE activity during wakefulness and rapid eye movement (REM) sleep, while patch-clamp recordings show that DMHmWAKE neurons fire more frequently at night. Chemogenetic manipulations demonstrate that DMHmWAKE neurons are necessary and sufficient for arousal. Single-cell profiling coupled with optogenetic activation experiments suggest that GABAergic DMHmWAKE neurons promote arousal. Surprisingly, our data suggest that mWAKE acts as a clock-dependent brake on arousal during the night, when mice are normally active. mWAKE levels peak at night under clock control, and loss of mWAKE leads to hyperarousal and greater DMHmWAKE neuronal excitability specifically at night. These results suggest that the clock does not solely promote arousal during an animal's active period, but instead uses opposing processes to produce appropriate levels of arousal in a time-dependent manner.


Assuntos
Relógios Circadianos , Sono , Camundongos , Animais , Masculino , Nível de Alerta/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Ritmo Circadiano/fisiologia
7.
Science ; 381(6665): eabl7398, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769095

RESUMO

Systemic metabolism has to be constantly adjusted to the variance of food intake and even be prepared for anticipated changes in nutrient availability. Therefore, the brain integrates multiple homeostatic signals with numerous cues that predict future deviations in energy supply. Recently, our understanding of the neural pathways underlying these regulatory principles-as well as their convergence in the hypothalamus as the key coordinator of food intake, energy expenditure, and glucose metabolism-have been revealed. These advances have changed our view of brain-dependent control of metabolic physiology. In this Review, we discuss new concepts about how alterations in these pathways contribute to the development of prevalent metabolic diseases such as obesity and type 2 diabetes mellitus and how this emerging knowledge may provide new targets for their treatment.


Assuntos
Eixo Encéfalo-Intestino , Diabetes Mellitus Tipo 2 , Ingestão de Alimentos , Metabolismo Energético , Hipotálamo , Vias Neurais , Obesidade , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Homeostase , Hipotálamo/fisiologia , Obesidade/fisiopatologia , Vias Neurais/fisiopatologia
8.
Nat Neurosci ; 26(10): 1820-1832, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735498

RESUMO

Rapid eye movement (REM) sleep is accompanied by intense cortical activity, underlying its wake-like electroencephalogram. The neural activity inducing REM sleep is thought to originate from subcortical circuits in brainstem and hypothalamus. However, whether cortical neurons can also trigger REM sleep has remained unknown. Here we show in mice that the medial prefrontal cortex (mPFC) strongly promotes REM sleep. Bidirectional optogenetic manipulations demonstrate that excitatory mPFC neurons promote REM sleep through their projections to the lateral hypothalamus and regulate phasic events, reflected in accelerated electroencephalogram theta oscillations and increased eye movement density during REM sleep. Calcium imaging reveals that the majority of lateral hypothalamus-projecting mPFC neurons are maximally activated during REM sleep and a subpopulation is recruited during phasic theta accelerations. Our results delineate a cortico-hypothalamic circuit for the top-down control of REM sleep and identify a critical role of the mPFC in regulating phasic events during REM sleep.


Assuntos
Neurônios , Sono REM , Camundongos , Animais , Sono REM/fisiologia , Neurônios/fisiologia , Hipotálamo/fisiologia , Córtex Pré-Frontal/fisiologia , Região Hipotalâmica Lateral , Sono/fisiologia
9.
Nat Neurosci ; 26(10): 1805-1819, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735497

RESUMO

The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.


Assuntos
Região Hipotalâmica Lateral , Neurônios , Camundongos , Animais , Região Hipotalâmica Lateral/metabolismo , Neurônios/fisiologia , Somatostatina/metabolismo , Sono/fisiologia , Hipotálamo/fisiologia , Ácido gama-Aminobutírico , Córtex Pré-Frontal/fisiologia , Mamíferos/metabolismo
10.
Nature ; 621(7980): 788-795, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37730989

RESUMO

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Assuntos
Comportamento Materno , Vias Neurais , Neurônios , Ocitocina , Vocalização Animal , Animais , Feminino , Camundongos , Sinais (Psicologia) , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Materno/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Fotometria , Núcleos Talâmicos/fisiologia , Vocalização Animal/fisiologia , Vigília
11.
Front Endocrinol (Lausanne) ; 14: 1202089, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448468

RESUMO

Histamine is a biogenic amine that acts as a neuromodulator within the brain. In the hypothalamus, histaminergic signaling contributes to the regulation of numerous physiological and homeostatic processes, including the regulation of energy balance. Histaminergic neurons project extensively throughout the hypothalamus and two histamine receptors (H1R, H3R) are strongly expressed in key hypothalamic nuclei known to regulate energy homeostasis, including the paraventricular (PVH), ventromedial (VMH), dorsomedial (DMH), and arcuate (ARC) nuclei. The activation of different histamine receptors is associated with differential effects on neuronal activity, mediated by their different G protein-coupling. Consequently, activation of H1R has opposing effects on food intake to that of H3R: H1R activation suppresses food intake, while H3R activation mediates an orexigenic response. The central histaminergic system has been implicated in atypical antipsychotic-induced weight gain and has been proposed as a potential therapeutic target for the treatment of obesity. It has also been demonstrated to interact with other major regulators of energy homeostasis, including the central melanocortin system and the adipose-derived hormone leptin. However, the exact mechanisms by which the histaminergic system contributes to the modification of these satiety signals remain underexplored. The present review focuses on recent advances in our understanding of the central histaminergic system's role in regulating feeding and highlights unanswered questions remaining in our knowledge of the functionality of this system.


Assuntos
Hipotálamo , Obesidade , Humanos , Hipotálamo/fisiologia , Núcleo Arqueado do Hipotálamo , Encéfalo , Ingestão de Alimentos
13.
Mol Cell Neurosci ; 126: 103873, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37295578

RESUMO

A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.


Assuntos
Dieta Hiperlipídica , Hipotálamo , Proglucagon , Transdução de Sinais , Animais , Ratos , Hipotálamo/fisiologia , Proglucagon/metabolismo , Ratos Sprague-Dawley , Masculino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/genética , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo , Sinapses , Fibras Nervosas/metabolismo , Eletrofisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resposta de Saciedade , Comportamento Alimentar
14.
Endocrinology ; 164(7)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37279930

RESUMO

When mammals are exposed to a warm environment, overheating is prevented by activation of "warm-responsive" neurons (WRNs) in the hypothalamic preoptic area (POA) that reduce thermogenesis while promoting heat dissipation. Heat exposure also impairs glucose tolerance, but whether this also results from activation of POA WRNs is unknown. To address this question, we sought in the current work to determine if glucose intolerance induced by heat exposure can be attributed to activation of a specific subset of WRNs that express pituitary adenylate cyclase-activating peptide (ie, POAPacap neurons). We report that when mice are exposed to an ambient temperature sufficiently warm to activate POAPacap neurons, the expected reduction of energy expenditure is associated with glucose intolerance, and that these responses are recapitulated by chemogenetic POAPacap neuron activation. Because heat-induced glucose intolerance was not blocked by chemogenetic inhibition of POAPacap neurons, we conclude that POAPacap neuron activation is sufficient, but not required, to explain the impairment of glucose tolerance elicited by heat exposure.


Assuntos
Hipotálamo , Área Pré-Óptica , Camundongos , Masculino , Animais , Área Pré-Óptica/fisiologia , Homeostase , Hipotálamo/fisiologia , Regulação da Temperatura Corporal/fisiologia , Neurônios/fisiologia , Glucose , Mamíferos
15.
Nat Neurosci ; 26(7): 1245-1255, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349481

RESUMO

Excitatory projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) drive aversive responses. We used patch-sequencing (Patch-seq) guided multimodal classification to define the structural and functional heterogeneity of the LHA-LHb pathway. Our classification identified six glutamatergic neuron types with unique electrophysiological properties, molecular profiles and projection patterns. We found that genetically defined LHA-LHb neurons signal distinct aspects of emotional or naturalistic behaviors, such as estrogen receptor 1-expressing (Esr1+) LHA-LHb neurons induce aversion, whereas neuropeptide Y-expressing (Npy+) LHA-LHb neurons control rearing behavior. Repeated optogenetic drive of Esr1+ LHA-LHb neurons induces a behaviorally persistent aversive state, and large-scale recordings showed a region-specific neural representation of the aversive signals in the prelimbic region of the prefrontal cortex. We further found that exposure to unpredictable mild shocks induced a sex-specific sensitivity to develop a stress state in female mice, which was associated with a specific shift in the intrinsic properties of bursting-type Esr1+ LHA-LHb neurons. In summary, we describe the diversity of LHA-LHb neuron types and provide evidence for the role of Esr1+ neurons in aversion and sexually dimorphic stress sensitivity.


Assuntos
Habenula , Feminino , Camundongos , Animais , Habenula/fisiologia , Hipotálamo/fisiologia , Região Hipotalâmica Lateral , Neurônios/fisiologia , Afeto , Vias Neurais/fisiologia
16.
Georgian Med News ; (337): 125-131, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37354685

RESUMO

Prolonged vibration exposure leads to alterations of the central control mechanisms of both the vestibulo-ocular and the vestibulo-autonomic systems, including a change in the hypothalamic-vestibular relationships associated, in particular, with the supraoptic nucleus and paraventricular nucleus. Post-vibration disturbances of the vestibular function are largely due to adaptive changes in neurotransmitter activity. The dynamics of spike activity of single neurons of the superior vestibular nucleus (SVN) in response to high-frequency stimulation of the paraventricular and supraoptic hypothalamic nuclei after long-term vibration exposure were analyzed. Analysis of impulse activity revealed the prevalence of tetanic potentiation in the responses of SVN neurons to high-frequency stimulation of paraventricular and supraoptic nuclei of rats. Exposure of animals to vibration led to a decrease in the number of neurons with tetanic potentiations and significant dominance of post-tetanic potentiation. Morphological and histochemical results showed that under hypothalamic stimulation in the SVN neurons of rats exposed to vibration, there is an increase in metabolism and dephosphorylation processes in the cellular structures of the studied brain area, which ultimately provides optimal conditions for the processes of cell survival and regeneration.


Assuntos
Hipotálamo , Vibração , Ratos , Animais , Hipotálamo/fisiologia , Núcleos Vestibulares/metabolismo , Neurônios/fisiologia , Encéfalo
17.
Cell Metab ; 35(5): 725-727, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37137284

RESUMO

Systemic control of homeostatic processes is of fundamental importance for survival and adaptation in metazoans. In this issue of Cell Metabolism, Chen and colleagues identify and methodically dissect a signaling cascade that is mobilized by the agouti-related peptide (AgRP)-expressing neurons in the hypothalamus, to ultimately modulate autophagy and metabolism in the liver upon starvation.


Assuntos
Autofagia , Hipotálamo , Fígado , Fígado/metabolismo , Hipotálamo/fisiologia , Humanos , Animais , Nutrientes/metabolismo , Transdução de Sinais
18.
Neurobiol Dis ; 182: 106155, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182721

RESUMO

Neuropathic pain, a severe clinical symptom, significantly affects the quality of life in the patients. The molecular mechanisms underlying neuropathic pain have been the focus of research in recent decades; however, the neuronal circuit-mediated mechanisms associated with this disorder remain poorly understood. Here, we report that a projection from the lateral hypothalamus (LH) glutamatergic neurons to the lateral habenula (LHb), an excitatory LH-LHb neuronal circuit, participates in nerve injury-induced nociceptive hypersensitivity. LH glutamatergic neurons are activated and display enhanced responses to normally non-noxious stimuli following chronic constriction injury. Chemogenetic inhibition of LH glutamatergic neurons or excitatory LH-LHb circuit blocked CCI-induced nociceptive hypersensitivity. Activation of the LH-LHb circuit led to augmented responses to mechanical and thermal stimuli in mice without nerve injury. These findings suggest that LH neurons and their triggered LH-LHb circuit participate in central mechanisms underlying neuropathic pain and may be targets for the treatment of this disorder.


Assuntos
Habenula , Neuralgia , Camundongos , Animais , Região Hipotalâmica Lateral , Qualidade de Vida , Hipotálamo/fisiologia , Neuralgia/etiologia
19.
Ann N Y Acad Sci ; 1525(1): 61-69, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199228

RESUMO

Seasonal changes in food intake and adiposity in many animal species are triggered by changes in the photoperiod. These latter changes are faithfully transduced into a biochemical signal by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface between the neural networks of the central nervous system and the periphery to control metabolic functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells involved in the regulation of energy balance and the blood-hypothalamus barrier (BHB) plasticity are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, traditionally considered to have unitary functions in targeting single endocrine sites, display actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be proven.


Assuntos
Melatonina , Animais , Melatonina/fisiologia , Células Ependimogliais/metabolismo , Hipotálamo/fisiologia , Encéfalo/metabolismo , Tireotropina/metabolismo , Estações do Ano , Homeostase
20.
Endocrinology ; 164(7)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253106

RESUMO

The circadian clock is a biological timekeeping system to govern temporal rhythms of the endocrine system and metabolism. The master pacemaker of biological rhythms is housed in the hypothalamic suprachiasmatic nucleus (SCN) where approximately 20,000 neurons exist and receive light stimulus as a predominant timed external cue (zeitgeber). The central SCN clock orchestrates molecular clock rhythms in peripheral tissues and coordinates circadian metabolic homeostasis at a systemic level. Accumulated evidence underscores an intertwined relationship between the circadian clock system and metabolism: the circadian clock provides daily dynamics of metabolic activity whereas the circadian clock activity is modulated by metabolic and epigenetic mechanisms. Disruption of circadian rhythms due to shift work and jet lag confounds the daily metabolic cycle, thereby increasing risks of various metabolic diseases, such as obesity and type 2 diabetes. Food intake serves as a powerful zeitgeber to entrain molecular clocks and circadian clock regulation of metabolic pathways, independently of light exposure to the SCN. Thus, the daily timing of food intake rather than the diet quantity and quality contributes to promoting health and preventing disease development through restoring circadian control of metabolic pathways. In this review, we discuss how the circadian clock dominates metabolic homeostasis and how chrononutritional strategies benefit metabolic health, summarizing the latest evidence from basic and translational studies.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Núcleo Supraquiasmático/metabolismo , Hipotálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA